2 3 Ja n 20 10 MACKEY FUNCTORS AND BISETS
نویسنده
چکیده
For any finite groupG, we define a bivariant functor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.
منابع مشابه
Mackey Functors and Bisets
For any finite group G, we define a bifunctor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.
متن کامل00 9 Mackey Functors and Bisets
For any finite group G, we define a bifunctor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.
متن کاملFused Mackey functors
Let G be a finite group. In [5], Hambleton, Taylor and Williams have considered the question of comparing Mackey functors for G and biset functors defined on subgroups of G and bifree bisets as morphisms. This paper proposes a different approach to this problem, from the point of view of various categories of G-sets. In particular, the category G-set of fused G-sets is introduced, as well as th...
متن کاملBurnside rings
1 Let G be a finite group. The Burnside ring B(G) of the group G is one of the fundamental representation rings of G, namely the ring of permutation representations. It is in many ways the universal object to consider when looking at the category of G-sets. It can be viewed as an analogue of the ring Z of integers for this category. It can be studied from different points of view. First B(G) is...
متن کاملK-theory, genotypes, and biset functors
Let p be an odd prime number. In this paper, we show that the genome Γ(P ) of a finite p-group P , defined as the direct product of the genotypes of all rational irreducible representations of P , can be recovered from the first group of K-theory K1(QP ). It follows that the assignment P 7→ Γ(P ) is a p-biset functor. We give an explicit formula for the action of bisets on Γ, in terms of genera...
متن کامل